Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
A highly specific, accurate, and simple RP-HPLC technique was developed for the realtime quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 μg·mL−1 for domperidone and 2–18 μg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations....
Traditional Chinese medicine (TCM) formulas have a significant clinical efficacy, and the fingerprint technology has been widely accepted to fully reveal the quality of TCM. Whereas, it is a great challenge to establish the fingerprint chromatogram which can fully reflect every single herb material in a short time. In this study, we used Xiaojin capsule (XJC) as a case and developed a rapid fingerprint method based on increasing the column temperature and flow rate simultaneously combined with computer-aided. First, the elution gradient was optimized based on the retention parameters and peak shape parameters of the four linear gradients, and then, the column temperature and flow rate were increased simultaneously to shorten the analysis time. Next, the standard fingerprint chromatogram of XJC, which can reflect every herb material, was generated. Finally, quality markers were screened through unsupervised cluster analysis and supervised orthogonal partial least squares discrimination analysis. Combining computer-aided with increasing column temperature and flow rate simultaneously can develop the rapid method for establishing HPLC fingerprint of XJC, which can fully reflect every single herb material and provide comprehensive quality control. The strategy for establishing HPLC fingerprint of TCM formula could be applied to other traditional Chinese medicine formulas and herbal medicine....
In the present work, the determination of omeprazole (OME) enantiomers in oral fluid and plasma samples was carried out utilizing microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry. A chiral column with cellulose-SB phase was used for the first time for enantiomeric separation of OME with an isocratic elution system using 0.2% ammonium hydroxide in hexane-ethanol mixture (70 : 30, v/v) as the mobile phase. OME enantiomers were determined utilizing a triple quadrupole tandem mass spectrometer in positive ion mode (ESI+) monitoring mass transitions: m/z 346.3⟶198.0 for OME and m/z 369.98⟶252.0 for internal standard. The limits of detection and quantification of the present method for both enantiomers were 0.1 and 0.4 ng/mL, respectively. The method validation provided good accuracy and precision. The matrix effect factor was less than 5%, and no interfering peaks were observed. The interday precision values ranged from 2.2 to 7.5 (%RSD), and the accuracy of determinations varied from −9.9% to 8.3%. In addition, the pharmacokinetics (PK) of omeprazole enantiomers in healthy subjects after a single oral dose was investigated. (S)-Enantiomers showed higher levels than (R)-enantiomers throughout 24 h. It was found that the mean maximum concentrations of (R)- and (S)-omeprazole in plasma samples were about two times higher than in oral fluid....
Worldwide, 25% of the population suffers from metabolic syndrome (MetS). The treatment of patients with MetS regularly includes drugs prescribed simultaneously to treat several disorders that manifest at the same time, such as hypercholesterolemia, arterial hypertension, and diabetes. To the authors’ best knowledge, there is no previous published analytical method for the simultaneous quantification of drugs used in the treatment of these diseases. In the present study, a rapid highperformance liquid chromatography with a diode-array detector HPLC-DAD methodology was developed for simultaneous quantification of carvedilol (CVD), telmisartan (TEL), bezafibrate (BZT), gliclazide (GZD), and glimepiride (GMP) in bulk and pharmaceutical form. The chromatographic separation of the five pharmaceuticals was achieved on a Hypersil GOLD C18 Selectivity (5 μm, 150 × 4.60 mm2) using a mobile phase of acetonitrile (50%) and 0.02 M KH2PO4, pH 3 (50%) at a flow rate of 1 mL/min and at 25 ◦C. The total separation time was 9 min. The analytical method was validated following the International Conference on Harmonization guidelines. A reproducible method was obtained with acceptable limits of detection (LOD) and quantification (LOQ) for CVD (0.012 and 0.035 μg mL−1), TEL (0.103 and 0.313 μg mL−1), BZT (0.025 and 0.076 μg mL−1), GZD (0.039 and 0.117 μg mL−1), and GMP (0.064 and 0.127 μg mL−1). The validated method allowed the determination of these drugs in commercial pharmaceutical products both individually and simultaneously. The present method was found to be suitable for simultaneous quantification of the five drugs that are most commonly used in the simultaneous treatment of the metabolic syndrome....
Chemical constituents from Zhideke granules were rapidly isolated and identified by ultra-performance liquid chromatography (UPLC) coupled with hybrid quadrupole-orbitrap mass spectrometry (MS) in positive and negative ion modes using both full scan and two-stage threshold-triggered mass modes. The secondary fragment ion information of the target compound was selected and compared with the compound reported in databases and related literatures to further confirm the possible compounds. A total of 47 chemical constituents were identified from the ethyl acetate extract of Zhideke granules, including 21 flavonoids and glycosides, 9 organic acids, 4 volatile components, 3 nitrogen-containing compounds, and 10 other compounds according to the fragmentation patterns, relevant literature, and MS data. The result provides a new method for the analysis of chemical constituents of Zhideke granules which laid the foundation for quality control and the study of pharmacodynamic materials of Zhideke granules....
Loading....